EMC Seminar 2014

Time-domain based EMI measurements

Jos Westhof-Jacobs

Sales Specialist Project Manager EMC & Tempest Solutions Rohde & Schwarz 04/2014

Introduction to EMI Today's Electronic Design & EMI

Nowadays we are facing...

- Faster clock speeds & smaller form factors
- More data lines for communications
- Included RF technology
- Power has more impact on signals with smaller amplitude
- PCB Layout stacking multilayer design
- Rise & fall times go down to fractions on nano-seconds
- So all this is high frequency

Introduction to EMI

Understand your Equipment

Clock rates, possible harmonics, frequency of power supplies, shielding, grounding ...

Introduction to EMI The impact of Electromagnetism

Even on a simple PCB circuit, Magnetic & Electric Field are generated as long as current passes through the conducting medium

Both the E & H-field will penetrate adjacent conducting medium and induce noise on it

The EMI bubble... How to test efficiently? EMC engineers are concerning about:

- Analog Signals, Digital Busses
- Parallel, Serial Bus Analysis & Decode
- Mix Signal Analysis
- FFT Analysis
- Triggering
- Time Correlated Events
- Acquisition rate (frequency range)
- Dead time (missed intermittent faults)
- Dynamic Range (sensitivity)
- EMI Filters, Detectors, Windowing
- EMI Limit lines
- EMI transducer correction factors
- EMI appropriate accessories / infrastructure

Agenda

Using Time-domain Instruments for EMI testing

- FFT principles and possible causes for errors
 - > Sampling
 - > Windowing
 - Pixel fence
 - > Leakage
- Time Domain Scan in EMI Receivers
- FFT in Oscilloscopes

Annexes:

- Practical examples
- Some links to Youtube

Principle of time domain scan in EMI receivers

Frequency domain

Division of the measured frequency range in consecutive frequency intervals and filtering

Frequency domain

Merging the spectral distributions of all partial frequency ranges

F&SCHWAR7

Time domain

Temporal sampling of the filtered signals with high sampling rate/resolution and windowing

Fast Fourier transform

Signal transformation of the filtered signals from time domain to frequency domain

Standard 'Realtime Analyzer' with FFT

Shannon / Nyquist-Theorem:

R&S Superhet. receiver using the 'Short-time FFT'

Fast Fourier transform (FFT)

- Only a certain number of the discrete signals in the time domain are used for calculation of the frequency spectra (windowing)
- The calculated spectrum is made up of individual components at the frequency bins (discrete frequency spectrum)

Fast Fourier transform (FFT)

FFT - leakage effect

time domain

frequency domain

FFT of transient/intermitting signals

- > An FFT with rectangular windowing is not suitable to correctly
 - measure transient signals/pulses
- Short pulses might be only partly captured by the window in the time domain
- The FFT algorithm interprets the signal in different ways depending on the captured signal interval

Characteristic of different window functions

Window functions comparison

Window function	Frequency resolution	Magnitude resolution	Recommended for measurements of
Rectangular	Best	Worst	Separation of two tones with almost equal amplitudes and small frequency distance
Hamming, Hanning	Good	Poor	Frequency response measurements Sine waves, periodic signals and narrow-band noise
Blackmann Harris (default)	Worst	Best	Mainly for signals with single frequencies to detect harmonics Accurate single-tone amplitude measurements
Kaiser- Bessel	Poor	Good	Separation of two tones with differing amplitudes and small frequency distance
Gaussian	Good	Good	Weak signals and short duration uses

Gaussian-shaped windowing

Overlapping factor vs. amplitude uncertainty

Response of a pulse sequence for different overlapping factors and Gauss windowing

EMC32 – Standard Scan vs. Time-Domain Scan

20 ms measure time, PK+ detector

Standard PK+ [Result Table.Result:1] TimeDomain PK+ [Result Table.Result:1]

Importance of Measurement Time in Receiver mode

FFT fundamentals for Oscilloscopes

FFT Implementation in conventional Oscilloscopes

The FFT calculation will produce a frequency domain result from <u>0 Hz to max Freq</u>.
Optionally Windowing is applied before the FFT calculation

> After FFT, the user can select the desired frequency range to be displayed

Disadvantages of conventional FFT:

- Slow speed / update rate
- Poor resolution (zooming after FFT)
- Complex configuration (need to know how TD settings affect the FFT result)

FFT Implementation in the RTO

- Desired frequency range is selected and down-converted to baseband using Digital Down Conversion (DDC) technique
- FFT is calculated over the selected (or zoomed) frequency range
- Optionally windowing is applied before the FFT calculation

Advantages of RTO approach:

- ✓ Higher speed / update rate
- ✓ Better resolution (zooming before FFT)
- ✓ Higher dynamic range
- ✓ Flexible configuration

Digital Down Conversion (DDC) block (simplified)

> The Multiplier is "equivalent" to the analog mixer and produces sum & difference signals

- > The NCO frequency is a close approximation to the original carrier (LO = \sim RF)
- > Multiplier difference freq is a baseband signal from 0 Hz to desired span freq.
- Low Pass Filter prevents aliasing by only passing the difference frequency (~Baseband)
- > The Data Resampling reduces the sample rate prior to the FFT transformation

FFT by R&S Oscilloscopes Spectrum Analyzer Model

Segmented FFT. What's that?

Some visual examples

Classic FFT approach

Classic FFT approach in Oscilloscopes:

- Classic oscilloscopes capture a signal and calculate ts FFT
- > Afterwards the next section of the signal is captured and the FFT is calculated again
- > Thus, they always use the FFT **sequentially**.
- The FFT result indicates a problem, but we are often unable to pinpcint where in the time-domain signal it happened.

Segmented and Overlapping FFT in the RTO

- To improve the FFT results further and to be independent of this windowing effect, the Oscilloscope offers the possibility to overlap frames.
- Overlap factor can be configured from 0% to 90%
- Max frame count can be configured from 1 to 10000

Gated FFT in the RTO

The FFT gate can be adjusted in both width and position, allowing the engineer to analyze only a portion of the time-domain capture

EMI Debugging with R&S Oscilloscope Ability to detect weak signals

EMI tend to be weak, to detect such signals

Oscilloscopes need to be able to detect them without limiting the bandwidth

Low Noise and High Sensitivity at Full Bandwidth

EMI Practical Diagnosis example Locating Abnormal Spike Source with FFT Gating

EMI Practical Diagnosis example Locating Broadband Noise Source

2012-11-0 11:21:58

Summary R&S oscilloscope for EMI Debugging

Fast and easy to use FFT

- The modern oscilloscope with hardware DDC and overlapping FFT is capable to do more than what the traditional oscilloscope is meant for.
- Can be used like a spectrum analyzer
- No need to care about #FFT points, etc

■ High sensitivity of 1mV/div

- Use near-field probes without preamp
- Intensity grading reveals signal characteristics
 - Easily distinguish cw signals, spurious events or bursts
- Correlation analysis with gated FFT
- Frequency mask with stop-on-violation
 - Capture spurious events in frequency domain and analyze

Debug EMI problems on your desk, even if no spectrum analyzer is available

EMC & RTO

www.rohde-schwarz.com or google on Youtube

Some useful links...:

- **I** R&S®RTO Oscilloscope Spectrum Sensitivity and FFT Capability
 - <u>http://www.youtube.com/watch?v=LHAdy9oo0Uo</u>
- **I** R&S®RTO oscilloscope frequency analysis part 1 (3): The implementation
 - http://www.youtube.com/watch?v=SrWFmL12RQc
- **I** R&S®RTO oscilloscope frequency analysis part 2 (3): AM and FM
 - http://www.youtube.com/watch?v=SrWFmL12RQc
- **I** R&S®RTO oscilloscope frequency analysis part 3 (3): Frequency, time
 - http://www.youtube.com/watch?v=HaWqSCapZwU
- **I** R&S®RTO Intuitive User Interface and Operation
 - http://www.youtube.com/watch?v=xFO3rPHGGNY
- **I** R&S®RTO Family, the digital oscilloscopes from Rohde & Schwarz
 - http://www.youtube.com/watch?v=rrYEFtgK_kg

Thank you for your attention !

Sales Specialist **Project Manager EMC & Tempest Solutions**

jos.westhof@rohde-schwarz.com Mob +32 475 83 65 90 Office +32 2 704 40 42 Rohde & Schwarz 04/2014

